4.7 Article

Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena

Journal

PHYSICAL REVIEW E
Volume 72, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.051906

Keywords

-

Ask authors/readers for more resources

In randomly connected networks of pulse-coupled elements a time-dependent input signal can be buffered over a short time. We studied the signal buffering properties in simulated networks as a function of the networks' state, characterized by both the Lyapunov exponent of the microscopic dynamics and the macroscopic activity derived from mean-field theory. If all network elements receive the same signal, signal buffering over delays comparable to the intrinsic time constant of the network elements can be explained by macroscopic properties and works best at the phase transition to chaos. However, if only 20% of the network units receive a common time-dependent signal, signal buffering properties improve and can no longer be attributed to the macroscopic dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available