4.6 Article

Protein kinase Cε induces systolic cardiac failure marked by exhausted inotropic reserve and intact Frank-Starling mechanism

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00454.2005

Keywords

pressure-volume loops; cardiac myofilaments

Funding

  1. NHLBI NIH HHS [P01-HL-62426, HL-63704] Funding Source: Medline

Ask authors/readers for more resources

Myofilament dysfunction is a common point of convergence for many forms of heart failure. Recently, we showed that cardiac overexpression of PKC epsilon initially depresses myofilament activity and then leads to a progression of changes characteristic of human heart failure. Here, we examined the effects of PKC epsilon on contractile reserve, Starling mechanism, and myofilament activation in this model of end-stage dilated cardiomyopathy. Pressure-volume loop analysis and echocardiography showed that the PKC epsilon mice have markedly compromised systolic function and increased end-diastolic volumes. Dobutamine challenge resulted in a small increase in contractility in PKC epsilon mice but failed to enhance cardiac output. The PKC epsilon mice showed a normal lengthdependent tension development in skinned cardiac muscle preparations, although Frank-Starling mechanism appeared to be compromised in the intact animal. Simultaneous measurement of tension and ATPase demonstrated that the maximum tension and ATPase were markedly lower in the PKC epsilon mice at any length or Ca2+ concentration. However, the tension cost was also lower indicating less energy expenditure. We conclude 1) that prolonged overexpression of PKC epsilon ultimately leads to a dilated cardiomyopathy marked by exhausted contractile reserve, 2) that PKC epsilon does not compromise the Frank-Starling mechanism at the myofilament level, and 3) that the Starling curve excursion is limited by the inotropic state of the heart. These results reflect the significance of the primary myofilament contractilopathy induced by phosphorylation and imply a role for PKC epsilon-mediated phosphorylation in myofilament physiology and the pathophysiology of decompensated cardiac failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available