4.5 Review

Protein kinase signaling cascades in CNS trauma

Journal

IUBMB LIFE
Volume 57, Issue 11, Pages 711-718

Publisher

WILEY
DOI: 10.1080/15216540500319143

Keywords

protein kinase; CNS; trauma; mechanical stretch; neurodegeneration; gliosis; ATP; purinergic receptor

Ask authors/readers for more resources

Advances in our understanding of the signaling pathways and cellular functions regulated by protein kinase cascades have paved the way to study their role in the response of brain and spinal cord to traumatic injury. Mechanical forces imparted by trauma stimulate mitogen-activated protein kinases and protein kinase B/Akt as well as cause changes in the state of phosphorylation of glycogen synthase kinase-3 beta. Extracellular ATP released by mechanical strain stimulates P2 purinergic receptors that are coupled to these protein kinase signaling pathways. These kinases regulate gene expression, cell survival, proliferation, differentiation, growth arrest, and apoptosis, thereby affecting cell fate, repair and plasticity after trauma. Elucidation of the molecular responses of protein kinase cascades to mechanical strain and the genes regulated by these signaling pathways may lead to therapeutic opportunities to minimize losses in motor skills and cognitive function caused by trauma to the central nervous system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available