4.3 Article

Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation

Journal

BIOTECHNIQUES
Volume 39, Issue 5, Pages 715-725

Publisher

FUTURE SCI LTD
DOI: 10.2144/000112014

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI40218] Funding Source: Medline

Ask authors/readers for more resources

The chromatin immunoprecipitation (ChIP) assay has recently been exploited as a powerful and versatile technique for probing protein-DNA interactions within the chromatin environment. In this method, intact cells are fixed with a reversible DNA-protein cross-linking agent (formaldehyde), and associated DNA is enriched by immunoprecipitating a target DNA binding protein. The bound DNA in the immune complexes is then used to identify that specific DNA binding protein's endogenous genomic targets. Nuclear factor kappa B (NF-kappa B) is a highly inducible transcription factor that controls genetic networks important for pathogen- or cytokine-induced inflammation, immune response, and cellular survival. In our studies of the genetic network under control of the inducible NF-kappa B transcription factor we found that the conventional ChIP technique using a single formaldehyde cross-linking step did not reproducibly cross-link it to DNA. As a result, we have developed a novel ChIP assay using a two-step cross-linking procedure, incorporating N-hydroxysuccinimide (NHS)-ester-mediated protein-protein cross-linking prior to conventional DNA-protein cross-linking. We demonstrate that this technique is highly efficient, cross-linking virtually all NF-kappa B/Rel A into covalent complexes, resulting in quantitative and robust identification of inducible NF-kappa B family binding to a variety of validated NF-kappa B-dependent genomic targets. To demonstrate the general utility of this two-step cross-linking procedure, we performed enhanced capture of cytokine-inducible signal transducer and activator of transcription-3 (STAT3) binding to one of its known target genes. Our method represents a significant improvement in the efficiency of ChIP analysis in the study of endogenous targets for rare transcription factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available