4.5 Article

Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 18, Issue 11, Pages 1762-1769

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx050151l

Keywords

-

Funding

  1. NCI NIH HHS [P01 CA88961] Funding Source: Medline
  2. NIEHS NIH HHS [ES-05022.] Funding Source: Medline

Ask authors/readers for more resources

(-)-Epigallocatechin gallate (EGCG), the most abundant and most biologically active compound in tea, has been proposed to have many beneficial health effects. The metabolic fate of EGCG, however, is not well understood. In the present study, we found that EGCG can be oxidized by peroxidase and hydrogen peroxide and then reacted with cysteine or glutathione to form conjugates. The structures of the cysteine and glutathione conjugates of EGCG were identified using 2D NMR and MS. Two thiol conjugates of EGCG (2 '-cysteinyl EGCG and 2 ''-cysteinyl EGCG) were identified by ESI-LC-MS/MS analysis from the urine samples of mice administered 200 or 400 mg/kg EGCG, i.p. These conjugates were not found in urine samples of mice after receiving EGCG at 50 mg/kg i.p., or 2000 mg/kg i.g., or in human urine following consumption of 3 g of decaffeinated green tea solids (containing 333 mg EGCG). At high doses, EGCG is believed to be oxidized to form EGCG quinone, which can react with glutathione to form the thiol conjugates. These results suggest that detectable amounts of thiol conjugates of EGCG are formed only after rather high doses of EGCG are given to the mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available