4.7 Article

Directional thermoelectric properties of Ru2Si3

Journal

INTERMETALLICS
Volume 13, Issue 11, Pages 1225-1232

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2005.04.006

Keywords

silicides; anisotropy; precipitates; crystal growth; thermoelectric properties

Ask authors/readers for more resources

The orthorhombic compound Ru2Si3 is currently of interest as a high-temperature thermoelectric material. In order to clarify the effects of crystal orientation on the thermoelectric properties of Ru(2)S(i)3, we have examined the microstructure, Seebeck coefficient, electrical resistivity, and thermal conductivity of Ru2Si3 along the three principal axes, using these measured quantities to describe the relative thermoelectric performance as a property of crystal orientation. Ru2Si3 undergoes a high temperature (HT) -> low temperature (LT) phase change and polycrystalline Si platelet precipitation during cooling, both of which are expected to effect the thermoelectric properties. The HT tetragonal -> LT orthorhombic phase transformation results in a [010]//[010], [100]//[001] two-domain structure, while polycrystalline Si precipitation occurs on the (100)(LT) and (001)(LT) planes. The [010] orientation is found to posses superior thermoelectric properties (with the dimensionless figure of merit, ZT([010)]/ZT([100])> 4 at 900 K), due principally to the larger Seebeck coefficient along the [010] direction. The effect of the domain structure on the thermoelectric properties is discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available