4.7 Article

Modeling of time to corrosion-induced cover cracking in reinforced concrete structures

Journal

CEMENT AND CONCRETE RESEARCH
Volume 35, Issue 11, Pages 2203-2218

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2005.06.007

Keywords

reinforcement corrosion; modeling; time to cover cracking; radial pressure

Ask authors/readers for more resources

Service life of the concrete structures depends on the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. Depending on the level of the oxidation of metallic iron, corrosion products may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion is mainly responsible for exerting the expansive radial pressure at the steel-concrete interface and development of hoop tensile stresses in the surrounding concrete resulting ultimately in the through cracking of the cover concrete. This cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, an attempt has been made to develop analytical models for predicting the time to cover cracking by considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem wherein the governing equations are expressed in terms of the radial displacement and the analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. The analytical models are then evaluated through their ability to reproduce available experimental trends and subsequently a sensitivity analysis has also been carried out to show the influence of the various variable parameters of the proposed models with reference to the experimental trends. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available