4.7 Article

RGS 16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes

Journal

BLOOD
Volume 106, Issue 9, Pages 2962-2968

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2005-02-0526

Keywords

-

Categories

Ask authors/readers for more resources

Regulators of G-protein signaling (RGS) constitute a family of proteins involved in the negative regulation of signaling through heterotrimeric G protein-coupled receptors (GPCRs). Several RGS proteins have been implicated in the down-regulation of chemokine signaling in hematopoietic cells. The chemokine stromal-cell-derived factor 1 (SDF-1) activates migration of hematopoietic progenitors cells but fails to activate mature megakaryocytes despite high levels of CXC chemokine receptor 4 (CXCR4) receptor expression in these cells. This prompted us to analyze RGS expression and function during megakaryocyte differentiation. We found that RGS16 and RGS18 mRNA expression was up-regulated during this process. Overexpressing RGS16 mRNA in the megakaryocytic MO7e cell line inhibited SDF-1-induced migration, mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) activation, whereas RGS18 overexpression had no effect on CXCR4 signaling. Knocking down RGS16 mRNA via lentiviral-mediated RNA interference increased CXCR4 signaling in MO7e cells and in primary megakaryocytes. Thus, our data reveal that RGS16 is a negative regulator of CXCR4 signaling in megakaryocytes. We postulate that RGS16 regulation is a mechanism that controls megakaryocyte maturation by regulating signals from the microenvironment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available