4.6 Article

Differential effects of B and T lymphocyte attenutator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts

Journal

JOURNAL OF IMMUNOLOGY
Volume 175, Issue 9, Pages 5774-5782

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.175.9.5774

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI40152] Funding Source: Medline

Ask authors/readers for more resources

Although fully MHC-mismatched murine cardiac allografts are rapidly rejected, allografts mismatched at only MHC class I or class II alleles survive long term; the immunologic basis for the long-term survival of MHC class I- or II-mismatched allografts is unknown. We examined the roles of two recently described inhibitory receptors, B and T lymphocyte attenuator (BTLA) and programmed death-1 (PD-1), in the survival of partially or fully MHC-mismatched allografts using gene-deficient recipients as well as through use of blocking mAbs in wild-type hosts. Partially MHC-mismatched allografts showed strong induction of BTLA, but not PD-1 mRNA and survived long term in wild-type recipients, whereas targeting of BTLA or its ligand, herpesvirus entry mediator, but not PD-1, prompted their rapid rejection. By contrast, fully MHC-mismatched cardiac allografts were acutely rejected in wild-type recipients despite the induction of both BTLA and PD-1. Targeting of PD-1 in several fully MHC-mismatched models accelerated rejection, whereas targeting of BTLA unexpectedly enhanced PD-1 induction by alloreactive CD4 and CD8 T cells and prolonged allograft survival. In vitro studies using allogeneic dendritic cells and T cells showed that at low levels of T cell activation, BTLA expression was primarily induced, but that with increasing degrees of T cell activation, the expression of PD-1 was strongly up-regulated. These data suggest that BTLA and PD-1 exert distinct inhibitory actions in vivo, with the BTLA/herpesvirus entry mediator pathway appearing to dominate in regulating responses against a restricted degree of allogeneic mismatch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available