4.5 Article

Porous-conductive chitosan scaffolds for tissue engineering II.: in vitro and in vivo degradation

Journal

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Volume 16, Issue 11, Pages 1017-1028

Publisher

SPRINGER
DOI: 10.1007/s10856-005-4756-x

Keywords

-

Ask authors/readers for more resources

Porous-conductive chitosan scaffolds were fabricated by blending conductive polypyrrole (PPy) particles with chitosan solution and employing an improved phase separation method. In vitro and in vivo degradation behaviors of these scaffolds were investigated. In the case of in vitro degradation, an enzymatic degradation system was employed and lysozyme was used as a working enzyme. Meanwhile, the degradation products of scaffolds, glucosamine and N-acetyl-glucosamine, were also analyzed with a HPLC method. In vivo degradation of scaffolds was performed by subcutaneously implanting these scaffolds in rat for prescheduled time intervals. In the both cases, the weight-loss of scaffolds was monitored during the whole degradation process for evaluating the degradation of scaffolds. The changes in conductivity of scaffolds after in vitro or in vivo degradation were also measured using a four-point technique. It was observed that the pore parameters of scaffolds themselves could significantly influence the degradation behaviors of scaffolds but the PPy content in the scaffolds seemed not to impart its effect to the degradation of scaffolds. Degradation dynamics of scaffolds and conductivity measurements indicated that these scaffolds shown fairly different behaviors in their in vitro and in vivo degradation process. According to the results obtained from in vitro and in vivo degradation of scaffolds and based on some requirements of practical tissue engineering application, it was suggested that the PPy content in the scaffold should be slightly higher than 3 wt.% but lower than 6 wt.%. (C) 2005 Springer Science + Business Media, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available