4.7 Review

Accounting for polarization in molecular simulation

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 172, Issue 2, Pages 69-85

Publisher

ELSEVIER
DOI: 10.1016/j.cpc.2005.01.022

Keywords

molecular dynamics; polarization; fluctuation charges; polarizable dipole; Drude Oscillator; Charge-On-Spring; water

Ask authors/readers for more resources

Polarization plays an important role in the energetics of molecular systems, not the least in biomolecular systems. Most computer simulation studies of such systems do not treat electronic polarizability explicitly, but only implicitly using effective charges, dielectric permittivities or continuum electrostatics methods. Yet, the introduction of explicit polarizability into biomolecular models and force fields is unavoidable when more accurate simulation results are to be obtained. Various ways to account for polarizability in (bio)molecular simulation are reviewed with an eye to striking a balance between accuracy on the one hand and simplicity and computational efficiency on the other. The various choices to be made are listed and discussed. The most promising approach, the so-called Charge-On-Spring type of models, is treated in more detail and applied to liquid water as an example. Its implementation in the GROMOS biomolecular simulation software is sketched. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available