4.8 Review

A versatile toolbox for variable DNA functionalization at high density

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 43, Pages 15071-15082

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja051725b

Keywords

-

Ask authors/readers for more resources

To broaden the applicability of chemically modified DNAs in nano- and biotechnology, material science, sensor development, and molecular recognition, strategies are required for introducing a large variety of different modifications into the same nucleic acid sequence at once. Here, we investigate the scope and limits for obtaining functionalized dsDNA by primer extension and PCR, using a broad variety of chemically modified deoxynucleotide triphosphates (dNTPs), DNA polymerases, and templates. All natural nucleobases in each strand were substituted with up to four different base-modified analogues. We studied the sequence dependence of enzymatic amplification to yield high-density functionalized DNA (fDNA) from modified dNTPs, and of fDNA templates, and found that GC-rich sequences are amplified with decreased efficiency as compared to AT-rich ones. There is also a strong dependence on the polymerase used. While family A polymerases generally performed poorly on demanding templates containing consecutive stretches of a particular base, family B polymerases were better suited for this purpose, in particular Pwo and Vent (exo-) DNA polymerase. A systematic analysis of fDNAs modified at increasing densities by CD spectroscopy revealed that single modified bases do not alter the overall B-type DNA structure, regardless of their chemical nature. A density of three modified bases induces conformational changes in the double helix, reflected by an inversion of the CD spectra. Our study provides a basis for establishing a generally applicable toolbox of enzymes, templates, and monomers for generating high-density functionalized DNAs for a broad range of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available