4.5 Article

Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 43, Pages 20200-20206

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0541967

Keywords

-

Ask authors/readers for more resources

In this study, ordered macroporous carbon with a three-dimensional (3D) interconnected pore structure and a graphitic pore wall was prepared by chemical vapor deposition (CVD) of benzene using inverse silica opal as the template. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrometry, nitrogen adsorption, and thermogravimetric analysis techniques were used to characterize the carbon samples. The electrochemical properties of the carbon materials as a carbon-based anode for lithium-ion batteries and as a Pt catalyst support for room-temperature methanol electrochemical oxidation were examined. It was observed that the CVD method is a simple route to fabrication of desired carbon nanostructures, affording a carbon with graphitic pore walls and uniform pores. The graphitic nature of the carbon enhances the rate performance and cyclability in lithium-ion batteries. The specific capacity was found to be further improved when SnO2 nanoparticles were supported on the carbon. The specific activity of Pt catalyst supported on the carbon materials for room-temperature methanol electrochemical oxidation was observed to be higher than that of a commercial Pt catalyst (E-TEK).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available