4.6 Article

Determination of mercury species in fish reference materials by gas chromatography-atomic fluorescence detection after closed-vessel microwave-assisted extraction

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1093, Issue 1-2, Pages 21-28

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2005.07.054

Keywords

mercury speciation; closed-vessel microwave-assisted extraction; biological samples; gas chromatography; atomic fluorescence spectrometry

Ask authors/readers for more resources

A simple and rapid method has been developed for speciation analysis of inorganic mercury and monomethylmercury (MMHg) in biological tissues. The procedure is based on the quantitative closed-vessel microwave-assisted leaching of mercury from biological samples with an alkaline extractant. The extracted mercury species are ethylated and analysed by capillary gas chromatography coupled to an atomic fluorescence detector via pyrolysis (CGC-pyro-AFS). The coupling between capillary gas chromatography and atomic fluorescence detector was optimized with the aim of minimizing the detection limits and time necessary for the species-selective determination of mercury compounds. The use of closed-vessel microwave-assisted extraction along with no clean-up steps before the ethylation leads to a significant total analysis time decrease with respect to similar procedures. The detection limit was 2 pg for MMHg (as Hg) and I pg for inorganic mercury. The method was validated by the analysis of DORM-2 (dogfish muscle) and DOLT-3 (dogfish liver) certified reference materials. The inorganic mercury and methylmercury concentrations found were in good agreement with the certified values. Recovery studies of fish muscle tissue spiked with inorganic mercury and MMHg were done to check the reliability of the method. In all cases satisfactory recoveries (92-105%) were obtained. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available