4.6 Article

The essential role of MEKK3 signaling in angiotensin II-induced calcineurin/nuclear factor of activated T-cells activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 44, Pages 36737-36746

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M506493200

Keywords

-

Ask authors/readers for more resources

Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes, such as T-cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. We determined that active MEKK3 was capable of activating calcineurin/nuclear factor of activated T-cells ( NFAT) signaling in cardiac myocytes and reprogramming cardiac gene expression. In contrast, small interference RNA directed against MEKK3 and a dominant negative form of MEKK3 caused the reduction of NFAT activation in response to angiotensin II in cardiac myocytes. Genetic studies showed that MEKK3-deficient mouse embryo fibroblasts failed to activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring MEKK3 to the MEKK3-deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. We determined that angiotensin II induced MEKK3 phosphorylation. Thus, MEKK3 functions downstream of the AT1 receptor and is essential for calcineurin/ NFAT activation. Finally, we determined that MEKK3-mediated activation of calcineurin/ NFAT signaling was associated with the phosphorylation of modulatory calcineurin-interacting protein 1 at Ser(108) and Ser(112). Taken together, our studies reveal a previously unrecognized novel essential regulatory role of MEKK3 signaling in calcineurin/ NFAT activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available