4.7 Article

Silencing primary dystonia: Lentiviral-mediated RNA interference therapy for DYT1 dystonia

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 45, Pages 10502-10509

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3016-05.2005

Keywords

dystonia; RNA interference; torsina; dyt1; gene therapy; FIV

Categories

Funding

  1. NINDS NIH HHS [P01 NS050210, NS050210] Funding Source: Medline

Ask authors/readers for more resources

DYT1 is the most common inherited dystonia. Currently, there are no preventive or curative therapies for this dominantly inherited disease. DYT1 dystonia is caused by a common three-nucleotide deletion in the TOR1A gene that eliminates a glutamic acid residue from the protein torsinA. Recent studies suggest that torsinA carrying the disease-linked mutation, torsinA(Delta E) acts through a dominant-negative effect by recruiting wild-type torsinA [torsinA(wt)] into oligomeric structures in the nuclear envelope. Therefore, suppressing torsinA(Delta E) expression through RNA interference (RNAi) could restore the normal function of torsinA(wt), representing a potentially effective therapy regardless of the biological role of torsinA. Here, we have generated short hairpin RNAs (shRNAs) that mediate allele-specific suppression of torsinA(Delta E) and rescue cells from its dominant-negative effect, restoring the normal distribution of torsinA(wt). In addition, delivery of this shRNA by a recombinant feline immunodeficiency virus effectively silenced torsinA(Delta E) in a neural model of the disease. We further establish the feasibility of this viral-mediated RNAi approach by demonstrating significant suppression of endogenous torsinA in mammalian neurons. Finally, this silencing of torsinA is achieved without triggering an interferon response. These results support the potential use of viral-mediated RNAi as a therapy for DYT1 dystonia and establish the basis for preclinical testing in animal models of the disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available