4.8 Article

Two-dimensional gas of massless Dirac fermions in graphene

Journal

NATURE
Volume 438, Issue 7065, Pages 197-200

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04233

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [GR/R73621/01, EP/C511875/1] Funding Source: researchfish

Ask authors/readers for more resources

Quantum electrodynamics ( resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry(1-3). The ideas underlying quantum electrodynamics also influence the theory of condensed matter(4,5), but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon(6,7)) in which electron transport is essentially governed by Dirac's ( relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximate to 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c(*)(2). This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available