4.6 Article

DNA damage regulates Chk2 association with chromatin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 45, Pages 37948-37956

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M509299200

Keywords

-

Funding

  1. NCI NIH HHS [R01CA82257] Funding Source: Medline

Ask authors/readers for more resources

DNA damage triggers cellular signaling pathways that control the cell cycle and DNA repair. Chk2 is a critical mediator of diverse responses to DNA damage. Chk2 transmits signals from upstream phosphatidylinositol 3'-kinase-like kinases to effector substrates including p53, Brca1, Cdc25A, and Cdc25C. Using chromatin fractionation as well as immunostaining combined with detergent pre-extraction, we have found that a small pool of Chk2 is associated with chromatin prior to DNA damage. Recovery of chromatin-bound Chk2 is reduced in an ATM-dependent manner by exposure to ionizing radiation. Camptothecin and adriamycin also reduce the amount of chromatin-associated Chk2. The Thr(68)-phosphorylated forms of Chk2 induced by DNA damage are found in soluble fractions, but not in the chromatin-enriched fraction. Functional serine/threonine glutamine cluster domain, forkhead-associated domain, and kinase activity are all required for efficient reduction of chromatin-bound Chk2 in response to DNA damage. Artificial induction of Chk2 oligomerization concomitant with exposure to low dose ionizing radiation reduces chromatin-bound Chk2. When Chk2 is incubated with chromatin-enriched fractions in vitro in the presence of ATP, hyperphosphorylated forms of Chk2 bind more weakly to chromatin than hypophosphorylated forms. Taken together, our data suggest that DNA damage induces activation of chromatin-bound Chk2 by a chromatin-derived signal, and that this results in dissociation of activated Chk2 from chromatin, facilitating further signal amplification and transmission to soluble substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available