4.7 Article

Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 123, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2110047

Keywords

-

Ask authors/readers for more resources

The shear-rate dependence of viscosity is studied for model polymer melts containing various concentrations of spherical filler particles by molecular-dynamics simulations, and the results are compared with the experimental results for calcium-carbonate-filled polypropylene. Although there are some significant differences in scale between the simulated model polymer composite and the system used in the experiments, some important qualitative similarities in shear behavior are observed. The trends in the steady-state shear viscosities of the simulated polymer-filler system agree with those seen in the experimental results; shear viscosities, zero-shear viscosities, and the rate of shear thinning are all seen to increase with filler content in both the experimental and simulated systems. We observe a significant difference between the filler volume fraction dependence of the zero-shear viscosity of the simulated system and that of the experimental system that can be attributed to a large difference in the ratio of the filler particle radius to the radius of gyration of the polymer molecules. In the simulated system, the filler particles are so small that they only have a weak effect on the viscosity of the composite at low filler volume fraction, but in the experimental system, the viscosity of the composite increases rapidly with increasing filler volume fraction. Our results indicate that there exists a value of the ratio of the filler particle radius to the polymer radius of gyration such that the zero-shear-rate viscosity of the composite becomes approximately independent of the filler particle volume fraction. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available