4.1 Article

Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay

Journal

JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
Volume 43, Issue 22, Pages 3242-3254

Publisher

WILEY
DOI: 10.1002/polb.20605

Keywords

adsorption; clay; crystallization; nanocomposites; polypropylene

Ask authors/readers for more resources

X-ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)-modified maleic-anhydride-grafted polypropylene/clay (PP-g-MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP-g-MA (designated as PP-g-HMA) and then mixing the PP-g-HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X-ray diffraction data and transmission electron microscopy images of PP-g-HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP-g-HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP-g-HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three-dimensional crystal growth to a two-dimensional spherulitic growth. Mechanical properties of PP-g-HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP-g-HMA. (c) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available