4.7 Article

Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre SigmaC

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 354, Issue 1, Pages 137-149

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.09.034

Keywords

orthoreovirus; avian reovirus fibre; triple beta-spiral; beta-barrel; receptor-binding

Ask authors/readers for more resources

Avian reovirus fibre, a homo-trimer of the sigmaC protein, is responsible for primary host cell attachment. The protein expressed in bacteria forms elongated fibres comprised of a carboxy-terminal globular head domain and a slender shaft, and partial proteolysis yielded a carboxy-terminal protease-stable domain that was amenable to crystallisation. Here, we show that this fragment retains receptor-binding capability and report its structure, solved using two-wavelength anomalous diffraction and refined using data collected from three different crystal forms at 2.1 angstrom, 2.35 angstrom and 3.0 angstrom resolution. The carboxy-terminal globular domain has a beta-barrel fold with the same overall topology as the mammalian reovirus fibre (sigma1). However, the monomers of the sigmaC trimer show a more splayed-out arrangement than in the sigmal structure. Also resolved are two triple beta-spiral repeats of the shaft or stalk domain. The presence in the sequence of heptad repeats amino-terminal to these triple beta-spiral repeats suggests that the unresolved portion of the shaft domain contains a triple alpha-helical coiled-coil structure. Implications for the function and stability of the sigmaC protein are discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available