4.6 Article

Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate

Journal

LANGMUIR
Volume 21, Issue 24, Pages 10923-10930

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la051187g

Keywords

-

Ask authors/readers for more resources

The dynamic and structural perturbations that result from the interactions between the anionic surfactant sodium dodecyl sulfate (SDS) and the hydrophobically modified biopolymer alginate (HM-alginate) have been studied with the aid of rheological methods, turbidimetry, and small-angle neutron scattering (SANS). The rheological results for a semidilute HM-alginate solution in the presence of SDS disclose strong interactions between HM-alginate and SDS at a low level of surfactant addition, and this feature is accompanied by enhanced turbidity. At higher surfactant concentrations the association complexes are disrupted. A strong temperature effect of the viscosity is observed in HM-alginate solutions at moderate SDS concentrations, where an elevated temperature leads to enhanced chain mobility, which promotes a breakup of the association complexes. The SANS results reveal a pronounced peak in the plot of scattered intensity versus wavevector q at intermediate q values for SDS concentrations above the critical micelle concentration (cmc). With contrast-matching conditions, using deuterated SDS instead of SDS, no interaction peak appears but an upturn in the scattered intensity is observed at small q value. The magnitude of this effect decreases with increasing surfactant concentration, showing clearly that SDS is capable of breaking up the large aggregates created.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available