4.6 Article

Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 47, Pages 39562-39568

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M509050200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 43695] Funding Source: Medline

Ask authors/readers for more resources

A low resolution model has been proposed for the exofacial conformation of the Glut1 glucose transporter in which eight transmembrane segments form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 4, predicted to be an inner helix in this structural model, was investigated by cysteine-scanning mutagenesis in conjunction with the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A functional, cysteine-less, parental Glut1 molecule was used to produce 21 Glut1 point mutants by individually changing each residue along transmembrane helix 4 to a cysteine. The single cysteine mutants were then expressed in Xenopus oocytes, and their expression levels, transport activities, and sensitivities to pCMBS were determined. In striking contrast to all of the other seven predicted inner helices, none of the 21 helix 4 single-cysteine mutants was demonstrably inhibited by pCMBS. However, cysteine substitution within helix 4 resulted in an unusually high number of severely transport-defective mutants. The low absolute transport activities of two of these mutants (G130C and G134C) were due to their extremely low levels of expression, presumably a result of structural instability and consequent degradation in oocytes, suggesting that these two residues play an important role in maintaining the native structure of Glut1. The other two transport-defective mutants (Y143C and E146C) exhibited low specific transport activities, implying that these two residues play an important role in the transport cycle. Based on these data, we conclude that the exoplasmic end of helix 4 lies outside the inner helical bundle in the exofacial configuration of Glut1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available