4.2 Article

Non-perturbative solution of the time-dependent Schrodinger equation describing H2 in intense short laser pulses

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-4075/38/22/005

Keywords

-

Ask authors/readers for more resources

A method for solving the time-dependent Schrodinger equation describing the electronic motion of molecular hydrogen exposed to very short intense laser pulses has been developed. The fully correlated three-dimensional time-dependent electronic wavefunction is expressed in terms of field-free wavefunctions. These are obtained from a configuration-interaction calculation where the one-electron basis functions are built from B splines. The reliability of the method is tested by comparing results in the low-intensity regime to the prediction of lowest order perturbation theory. The onset of non-perturbative effects is shown for higher intensities and the validity of the single-active electron approximation is briefly discussed. Finally, the ability of the method to calculate photoelectron spectra including above-threshold-ionization peaks is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available