4.6 Review Book Chapter

Electrochemically Driven Phase Transitions in Insertion Electrodes or Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines

Journal

ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40
Volume 40, Issue -, Pages 501-529

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev-matsci-070909-104435

Keywords

lithium intercalation compounds; phase transition kinetics; nucleation and growth; electrical overpotential; phase-field model

Ask authors/readers for more resources

The thermodynamics and kinetics of phase transformations in electrochemical systems are reviewed. Phase transitions in LiMPO4(M = Fe, Mn, Ni, Co) olivines are highlighted. The phase transformation phenomena in LiMPO4 are diverse and include thermodynamic effects of particle size and applied overpotential, the appearance of metastable phases, and the effects of defects from atomic disorder and aliovalent doping. Such phenomena also include kinetic effects such as interface motion and diffusion of Li-electron complexes. The nature of phase transitions directly influences electrode performance in battery applications. Reduced particle size and doping can reduce or eliminate room-temperature Li miscibility gaps, which in turn affect characteristics of state of charge versus voltage and the elastic energy clue to volume mismatches between phases. Near the conditions for a phase transition, Li diffusion coefficients are reduced. Nucleation and growth kinetics produce a series of phase transition sequences, which can result in the accumulation of noncrystalline phases during electrochemical cycling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available