4.7 Article Proceedings Paper

The Notch signaling pathway is related to neurovascular progression of pancreatic cancer

Journal

ANNALS OF SURGERY
Volume 242, Issue 6, Pages 791-801

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.sla.0000189115.94847.f1

Keywords

-

Categories

Ask authors/readers for more resources

Objective: To analyze the potential role of the Notch signaling pathway in pancreatic cancer angiogenesis and invasion. Background: Angiogenesis, pain, and early neuroinvasion are clinical features of pancreatic cancer. Blood vessels and nerves develop together and use common routes through the organism. The Notch pathway (Notch-1/4, Jagged-1/2, Delta-1) appears crucial in this process. The current study analyzed the Notch pathway in pancreatic cancer and characterized its angiogenic and invasive effects. Methods: Five PaCa cell lines were cultured for the in vitro experiments. Real-time quantitative RT-PCR was done to quantify mRNA expression in 31 human PaCa specimens, and immunohistochemistry was used to localize protein expression within tumor specimens. Activation of the Notch signaling was done by transfection of PaCa cells with a constitutive active Notch-1 mutant (Notch-IC). Overexpression of Jagged and Delta was achieved by transfection of full-length cDNA. Spheroid assays were used to study angiogenesis and ELISAs to measure VEGF, bFGF, and angiogenin expression. Matrigel invasion assays were used to analyze tumor cell invasion. Results: Notch-3 and Notch-4 mRNA were significantly (P < 0.001) overexpressed in PaCa. Immunohistochemistry revealed protein accumulation of Notch-1 as well. All ligands were significantly up-regulated. A positive immunosignal of ligands was seen in nerves, blood vessels, and ductal tumor cells. Transfection of PaCa cells with the constitutive active Notch-IC mutant and with Jagged-1 revealed increased levels for VEGF. Concomitantly, recombinant Jagged-1 increased sprouting of endothelial cells in the spheroid assay. Conclusion: The Notch pathway most likely regulates neurovascular development in pancreatic cancer. Activation of this signaling pathway by constitutive Notch-1 mutants and by Jagged-1 causes all angiogenic and invasive tumor phenotype. Specific blockade of Notch signaling may therefore be beneficial for patients with pancreatic cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available