4.4 Letter

The small introns of antisense genes are better explained by selection for rapid transcription than by genomic design

Journal

GENETICS
Volume 171, Issue 4, Pages 2151-2155

Publisher

GENETICS
DOI: 10.1534/genetics.105.048066

Keywords

-

Funding

  1. NCI NIH HHS [CA 84405, R01 CA084405] Funding Source: Medline

Ask authors/readers for more resources

Several models have been proposed to explain why expression parameters of a gene might be related to the size of the gene's introns. These include the idea that an energetic cost of transcription should favor smaller introns in highly expressed genes (the economy selection argument) and that tissue-specific genes reside in genomic locations with complex chromatin level control requiring large amounts of noncoding DNA (the genomic design hypothesis). We recently proposed a modification of the economy model arguing that, for some genes, the time that expression takes is more important than the energetic cost, such that some weakly but rapidly expressed genes might also have small introns. We suggested that antisense genes might be such a class and showed that the data appear to be consistent with this. We now reexamine this model to ask (a) whether the effects described were owing solely to the fact that antisense genes are often noncoding RNA and (b) whether we can confidently reject the genomic design model as an explanation for the facts. We show that the effects are not specific to noncoding RNAs and that the predictions of the genomic design model for the most part are not upheld.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available