4.8 Article

Enhanced characterization of complex proteomic samples using LC-MALDI MS/MS: Exclusion of redundant peptides from MS/MS analysis in replicate runs

Journal

ANALYTICAL CHEMISTRY
Volume 77, Issue 23, Pages 7816-7825

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac050956y

Keywords

-

Funding

  1. NHGRI NIH HHS [HG0023] Funding Source: Medline

Ask authors/readers for more resources

Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available