4.5 Article

High-Q UHF micromechanical radial-contour mode disk resonators

Journal

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
Volume 14, Issue 6, Pages 1298-1310

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2005.856675

Keywords

electromechanical coupling; microelectromechanical systems (MEMS); microelectromechanical devices; microresonator; quality factor; resonator; UHF; VHF

Ask authors/readers for more resources

A micromechanical, laterally vibrating disk resonator, fabricated via a technology combining polysilicon surface-micromachining and metal electroplating to attain submicron lateral capacitive gaps, has been demonstrated at frequencies as high as 829 MHz and with Q's as high as 23 000 at 193 MHz. Furthermore, the resonators have been demonstrated operating in the first three radial contour modes, allowing a significant frequency increase without scaling the device, and a 193 MHz resonator has been shown operating at atmospheric pressure with a Q of 8,880, evidence that vacuum packaging is not necessary for many applications. These results represent an important step toward reaching the frequencies required by the RF front-ends in wireless transceivers. The geometric dimensions necessary to reach a given frequency are larger for this contour-mode than for the flexural-modes used by previous resonators. This, coupled with its unprecedented Q value, makes this disk resonator a choice candidate for use in the IF and RF stages of future miniaturized transceivers. Finally, a number of measurement techniques are demonstrated, including two electromechanical mixing techniques, and evaluated for their ability to measure the performance of sub-optimal (e.g., insufficiently small capacitive gap, limited dc-bias), high-frequency, high-Q micromechanical resonators under conditions where parasitic effects could otherwise mask motional output currents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available