3.8 Article

Learned helplessness: Validity and reliability of depressive-like states in mice

Journal

BRAIN RESEARCH PROTOCOLS
Volume 16, Issue 1-3, Pages 70-78

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainresprot.2005.09.002

Keywords

learned helplessness; depressive-like behavior; antidepressive treatment; mice

Ask authors/readers for more resources

The learned helplessness paradigm is a depression model in which animals are exposed to unpredictable and uncontrollable stress, e.g. electroshocks, and subsequently develop coping deficits for aversive but escapable situations (J.B. Overmier, M.E. Seligman, Effects of inescapable shock upon subsequent escape and avoidance responding, J. Comp. Physiol. Psychol. 63 (1967) 28-33 [15]). It represents a model with good similarity to the symptoms of depression, construct, and predictive validity in rats. Despite an increased need to investigate emotional, in particular depression-like behaviors in transgenic mice, so far only a few studies have been published using the learned helplessness paradigm. One reason may be the fact that-in contrast to rats (B. Vollmayr, F.A. Henn, Learned helplessness in the rat: improvements in validity and reliability, Brain Res. Brain Res. Protoc. 8 (2001) 1-7)-there is no generally accepted learned helplessness protocol available for mice. This prompted us to develop a reliable helplessness procedure in C57BL/6N mice, to exclude possible artifacts, and to establish a protocol, which yields a consistent fraction of helpless mice following the shock exposure. Furthermore, we validated this protocol pharmacologically using the tricyclic antidepressant imipramine. Here, we present a mouse model with good face and predictive validity that can be used for transgenic, behavioral, and pharmacological studies. (c) 2005 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available