4.6 Article

Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenornic library and the Sargasso seat

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 71, Issue 12, Pages 8506-8513

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.71.12.8506-8513.2005

Keywords

-

Ask authors/readers for more resources

Sequence analysis of environmental DNA promises to provide new insights into the ecology and biogeochemistry of uncultured marine microbes. In this study we used the Sargasso Sea Whole Genome Sequence (WGS) data set to search for hydrolases used by Cytophaga-like bacteria to degrade biopolymers such as polysaccharides and proteins. Analysis of the Sargasso WGS data for contigs bearing both the 16S rRNA genes of Cytophaga-like bacteria and hydrolase genes revealed a cellulase gene (celM) most similar to the gene found in Cytophaga hutchinsonii. A BLAST search of the entire Sargasso Sea WGS data set indicated that celM was the most abundant cellulase-like gene in the Sargasso Sea. However, the similarity between CelM-like cellulases and peptidases belonging to metalloprotease family M42 led us to question whether CelM is involved in the degradation of polysaccharides or proteins. PCR primers were designed for the celM genes in the Sargasso Sea WGS data set and used to identify celM in a fosmid library constructed with prokaryotic DNA from the western Arctic Ocean. Expression analysis of the Cytophaga-like Arctic CelM, which is 63% identical and 77% similar to CelM in C. hutchinsonii, indicated that there was peptidase activity, whereas cellulase activity was not detected. Our analysis suggests that the celM gene plays a role in the degradation of protein by Cytophaga-like bacteria. The abundance of peptidase genes in the Cytophaga-like fosmid clone provides further evidence for the importance of Cytophaga-like bacteria in the degradation of protein in high-molecular-weight dissolved organic matter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available