4.6 Article

Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid:: a matter of apoplastic reactions

Journal

NEW PHYTOLOGIST
Volume 168, Issue 3, Pages 541-550

Publisher

WILEY
DOI: 10.1111/j.1469-8137.2005.01540.x

Keywords

apoplast; Arabidopsis thaliana; callose; elongation; hydroxyproline-rich glycoproteins (HRGPs); reactive oxygen species (ROS); root

Categories

Ask authors/readers for more resources

Treatment of the Arabidopsis thaliana root with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) immediately imposes a reduced maximal cell length beyond which further elongation is blocked. Here, we investigated possible apoplastic reactions involved in the inhibition of cell elongation. Five-day-old Arabidopsis seedlings were transferred to a growth medium supplemented with ACC and the effect on root cell length was recorded after 3 h of treatment. Altered characteristics in the apoplast of the nonelongating cells in the ACC-treated root, such as 'reactive oxygen species' (ROS) production and callose deposition, were detected using specific fluorochromes. The presence of functional hydroxyproline-rich glycoproteins (HRGPs) and the crosslinking of these cell-wall proteins are essential in limiting cell elongation. The ROS that drive the oxidative crosslinking of HRGPs, accumulate in the apoplast of cells in the zone where cell elongation stops. In the same cells, callose is deposited in the cell wall. The final cell length in the Arabidopsis root treated for a short period with ACC is determined in the zone of fast elongation. Both HRGPs crosslinking by ROS and callose deposition in the cell wall of this zone are suggested as causes for the reduced cell elongation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available