4.6 Review Book Chapter

Warmer Shorter Winters Disrupt Arctic Terrestrial Ecosystems

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev-ecolsys-120213-091620

Keywords

climate change; snow; ice; growing season; mild period; phenological mismatch

Ask authors/readers for more resources

The Earth is warming, especially in polar areas in which winter temperatures and precipitation are expected to increase. Despite a growing research focus on winter climatic change, the impacts on Arctic terrestrial ecosystems remain poorly understood. Snow acts as an insulator, and depth changes affect the enhancement of thermally dependent reactions, such as microbial activity, affecting soil nutrient composition, respiration, and winter gas efflux. Snow depth and spring temperatures influence snow melt timing, determining the start of plant growth and forage availability. Delays in winter onset affect tundra carbon balance, faunal hibernation, and migration but are unlikely to lengthen the plant growing season. Mild periods in winter followed by a return to freezing have negative consequences for plants and invertebrates, and the resultant ice layers act as barriers to foraging, triggering starvation of herbivores and their predators. In summary, knock-on effects between seasons and trophic levels have important consequences for biological activity, diversity, and ecosystem function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available