4.5 Article

NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 95, Issue 6, Pages 1777-1784

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2005.03475.x

Keywords

cell migration; integrins; mitogen-activated protein kinase; neural cell adhesion molecule ectodomain shedding

Funding

  1. NIMH NIH HHS [MH064056] Funding Source: Medline
  2. NINDS NIH HHS [NS26620] Funding Source: Medline

Ask authors/readers for more resources

The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration and synaptic plasticity. This study describes a novel function of NCAM140 in stimulating integrin-dependent cell migration. Expression of NCAM140 in rat B35 neuroblastoma cells resulted in increased migration toward the extracellular matrix proteins fibronectin, collagen IV, vitronectin, and laminin. NCAM-potentiated cell migration toward fibronectin was dependent on beta 1 integrins and required extracellular-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activity. NCAM140 in B35 neuroblastoma cells was subject to ectodomain cleavage resulting in a 115 kDa soluble fragment released into the media and a 30 kDa cytoplasmic domain fragment remaining in the cell membrane. NCAM140 ectodomain cleavage was stimulated by the tyrosine phosphatase inhibitor pervanadate and inhibited by the broad spectrum metalloprotease inhibitor GM6001, characteristic of a metalloprotease. Moreover, treatment of NCAM140-B35 cells with GM6001 reduced NCAM140-stimulated cell migration toward fibronectin and increased cellular attachment to fibronectin to a small but significant extent. These results suggested that metalloprotease-induced cleavage of NCAM140 from the membrane promotes integrin- and ERK1/2-dependent cell migration to extracellular matrix proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available