4.7 Article

Peripheral hyperinsulinemia promotes tau phosphorylation in vivo

Journal

DIABETES
Volume 54, Issue 12, Pages 3343-3348

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.54.12.3343

Keywords

-

Ask authors/readers for more resources

Cerebral insulin receptors play an important role in regulation of energy homeostasis and development of neurodegeneration. Accordingly, type 2 diabetes characterized by insulin resistance is associated with an increased risk of developing Alzheimer's disease. Formation of neurofibrillary tangles, which contain hyperphosphorylated tau, represents a key step in the pathogenesis of neurodegenerative diseases. Here, we directly addressed whether peripheral hyperinsulinemia as one feature of type 2 diabetes can alter in vivo cerebral insulin signaling and tau phosphorylation. Peripheral insulin stimulation rapidly increased insulin receptor tyrosine phosphorylation, mitogen-activated protein kinase and phosphatidylinositol (PI) 3-kinase pathway activation, and dose-dependent tau phosphorylation at Ser(202) in the central nervous system. Phospho-FoxO1. and PI-3,4,5 -phosphate immunostainings of brains from insulin-stimulated mice showed neuronal staining throughout the brain, not restricted to brain areas without functional blood-brain barrier. Importantly, in insulin-stimulated neuronal/brain-specific insulin receptor knockout mice, cerebral insulin receptor signaling and tau phosphorylation were completely abolished. Thus, peripherally injected insulin directly targets the brain and causes rapid cerebral insulin receptor signal transduction and site-specific tau phosphorylation in vivo, revealing new insights into the linkage of type 2 diabetes and neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available