4.1 Article

Minimal informationally complete measurements for pure states

Journal

FOUNDATIONS OF PHYSICS
Volume 35, Issue 12, Pages 1985-2006

Publisher

SPRINGER
DOI: 10.1007/s10701-005-8658-z

Keywords

quantum state tomography; informationally complete measurement; positive operator-valued measure

Ask authors/readers for more resources

We consider measurements, described by a positive-operator-valued measure (POVM), whose outcome probabilities determine an arbitrary pure state of a D-dimensional quantum system. We call such a measurement a pure-state informationally complete (PS I-complete) POVM. We show that a measurement with 2D-1 outcomes cannot be PS I-complete, and then we construct a POVM with 2D outcomes that suffices, thus showing that a minimal PS I-complete POVM has 2D outcomes. We also consider PS I-complete POVMs that have only rank-one POVM elements and construct an example with 3D-2 outcomes, which is a generalization of the tetrahedral measurement for a qubit. The question of the minimal number of elements in a rank-one PS I-complete POVM is left open.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available