4.6 Review Book Chapter

Macromolecular modeling with Rosetta

Journal

ANNUAL REVIEW OF BIOCHEMISTRY
Volume 77, Issue -, Pages 363-382

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev.biochem.77.062906.171838

Keywords

protein design; phasing; proteins; RNA; protein structure prediction

Funding

  1. Howard Hughes Medical Institute Funding Source: Medline

Ask authors/readers for more resources

Advances over the past few years have begun to enable prediction and design of macromolecular structures at near-atomic accuracy. Progress has stemmed from the development of reasonably accurate and efficiently computed all-atom potential functions as well as effective conformational sampling strategies appropriate for searching a highly rugged energy landscape, both driven by feedback from structure prediction and design tests. A unified energetic and kinematic framework in the Rosetta program allows a wide range of molecular modeling problems, from fibril structure prediction to RNA folding to the design of new protein interfaces, to be readily investigated and highlights areas for improvement. The methodology enables the creation of novel molecules with useful functions and holds promise for accelerating experimental structural inference. Emerging connections to crystallographic phasing, NMR modeling, and lower-resolution approaches are described and critically assessed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available