4.7 Article

Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 56, Issue 422, Pages 3041-3049

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eri301

Keywords

Arabidopsis thaliana; ascorbate-glutathione cycle; oxidative stress; photosystem II; vtc-1

Categories

Ask authors/readers for more resources

The Arabidopsis thaliana ascorbate-deficient vtc-1 mutant has only 30% ascorbate contents of the wild type (WT). This ascorbate-deficient mutant was used here to study the physiological roles of ascorbate under salt stress in vivo. Salt stress resulted in a more significant decrease in CO2 assimilatory capacity in the vtc-1 mutant than in the WT. Photosystem II function in the Arabidopsis vtc-1 mutant also showed an increased sensitivity to salt stress. Oxidative stress, indicated by the hydrogen peroxide content, increased more dramatically in the vtc-1 mutant than in the WT under salt stress. To clarify the reason for the increased oxidative stress in the vtc-1 mutant, the contents of small antioxidant compounds and the activities of several antioxidant enzymes in the ascorbate-glutathione cycle were measured. Despite an elevated glutathione pool in the vtc-1 mutant, the ascorbate contents and the reduced form of ascorbate decreased very rapidly under salt stress. These results showed that the activities of MDAR and DHAR were lower in the vtc-1 mutant than in the WT under salt stress. Thus, low intrinsic ascorbate and an impaired ascorbate-glutathione cycle in the vtc-1 mutant under salt stress probably induced a dramatic decrease in the reduced form of ascorbate, which resulted in both enhanced ROS contents and decreased NPQ in the vtc-1 mutant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available