4.5 Article

The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 25, Issue 24, Pages 11059-11072

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.24.11059-11072.2005

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM034028, GM34028] Funding Source: Medline

Ask authors/readers for more resources

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare the mRNA abundance of C. elegans genes in wild-type animals to that in mutants with reduced or elevated lin-14 activity. Five of the candidate LIN-14 target genes identified by microarrays, including the insulin/insulin-like growth factor family gene ins-33, contain putative LIN-14 consensus sites in their upstream DNA sequences. Genetic analysis indicates that the developmental regulation of ins-33 mRNA involves the stage-specific repression of ins-33 transcription by LIN-14 via sequence-specific DNA binding. These results reinforce the conclusion that lin-14 encodes a novel class of transcription factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available