4.7 Article

Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins

Journal

DEVELOPMENTAL CELL
Volume 9, Issue 6, Pages 791-804

Publisher

CELL PRESS
DOI: 10.1016/j.devcel.2005.11.005

Keywords

-

Funding

  1. NCI NIH HHS [CA46128] Funding Source: Medline
  2. NIDDK NIH HHS [DK54913] Funding Source: Medline
  3. NINDS NIH HHS [NS36251] Funding Source: Medline

Ask authors/readers for more resources

Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available