4.2 Article

Engineering thermal stability in RNA phage capsids via disulphide bonds

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 5, Issue 12, Pages 2034-2041

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2005.507

Keywords

RNA phages; disulphide bonds; thermal stability; electrospray; mass spectrometry

Ask authors/readers for more resources

The RNA bacteriophages, a group that includes phages Q beta and MS2, have a number of potential bionanotechnological applications, including cell specific drug delivery and as substrates for the formation of novel materials. Despite extensive sequence identity between their coat protein subunits, and an almost identical three-dimensional fold, Q beta and MS2 capsids have dramatically different thermal stabilities. The increased stability of Q beta has been correlated with the inter-subunit disulphide bonds present in that capsid and not present in MS2. We have tested this hypothesis directly using mass spectrometry. Analysis of the dissociated coat protein subunits suggests that inter-molecular disulphides are formed at the capsid five-fold but may not be at the three-fold axes. This conclusion has been tested by engineering disulphide cross-links into either the five-fold or three-fold positions of the recombinant MS2 capsid. Five-fold cross-linking results in a mutant with stability properties similar to those of Q beta. Three-fold cross-linking results in a mutant unable to assemble T = 3 shells, implying that five-fold structures are on pathway to capsid assembly in these phages. The results demonstrate how it is possible to redesign the physical properties of phage shells and may be of general relevance to future applications of viruses and virus-like particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available