4.6 Article

Theory of directional pulse propagation

Journal

PHYSICAL REVIEW A
Volume 72, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.063807

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [GR/T17267/01] Funding Source: researchfish

Ask authors/readers for more resources

We construct combined electric and magnetic field variables which independently represent energy flows in the forward and backward directions, respectively, and use these to reformulate Maxwell's equations. These variables enable us to not only judge the effect and significance of backward-traveling field components, but also to discard them when appropriate. They thereby have the potential to simplify numerical simulations, leading to potential speed gains of up to 100% over standard finite difference time-domain (FDTD) or pseudospectral spatial-domain (PSSD) simulations. We present results for various illustrative situations, including an example application to second harmonic generation in periodically poled lithium niobate. These field variables are also used to derive both envelope equations useful for narrow-band pulse propagation, and a second order wave equation. Alternative definitions are also presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available