4.3 Article

Characterisation of carbohydrate-binding sites in developmental stages of Myxobolus cerebralis

Journal

PARASITOLOGY RESEARCH
Volume 97, Issue 6, Pages 505-514

Publisher

SPRINGER
DOI: 10.1007/s00436-005-1468-6

Keywords

-

Categories

Ask authors/readers for more resources

Glycans and lectins (carbohydrate-binding molecules) form a mutual recognition system, which enables parasitic organisms to attach themselves to the host cells and/or take part in the migration of their developmental stages into the target tissue. The aim of the present study was to identify and characterise the potential binding activity of glycoconjugates in different developmental stages of Myxobolus cerebralis, the causative agent of whirling disease in salmonids. The binding patterns of 13 biotinylated neoglycoconjugates were histochemically examined in thin-sections of infected rainbow trout (Oncorhynchus mykiss) and oligochaetes (Tubifex tubifex), as well as isolated waterborne triactinomyxon spores. A distinct structure-selective and developmental stage-regulated expression of certain classes of carbohydrate binding was observed. In triactinomyxon spores, the expression of carbohydrate binding activity for alpha-l-Fuc-BSA-biotin, alpha-d-GalNAc-BSA-biotin, beta-d-GlcNAc-BSA-biotin, Lac-BSA-biotin and ASF-biotin was up-regulated in the polar capsules; the shell valves showed no activity. In the gut of T. tubifex, polar capsules of the parasite showed strong positive reaction only for beta-d-GlcNAc-BSA-biotin. In fish cartilage, polar capsules were negative, but the spore shell valves showed a broad range of carbohydrate binding activity. No activity was detected for either alpha 6- or alpha 3-linked N-acetyl-d-neuraminic acid to galactose. An adhesion assay was performed on GlycoWell(R)-plates and Myxobolus spores were found to specifically adhere to matrices containing residues of lactose, fucose, galactose, N-acetyl-d-galactosamine and N-acetyl-d-glucosamine. This is the first study to identify lectin activity in a myxozoan parasite; activity that is likely to play a role in the recognition systems involved in host specificity and the processes of spore attachment and invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available