4.5 Article

Reduction of Pax9 gene dosage in an allelic series of mouse mutants causes hypodontia and oligodontia

Journal

HUMAN MOLECULAR GENETICS
Volume 14, Issue 23, Pages 3605-3617

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddi388

Keywords

-

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Missing teeth (hypodontia and oligodontia) are a common developmental abnormality in humans and heterozygous mutations of PAX9 have recently been shown to underlie a number of familial, non-syndromic cases. Whereas PAX9 haploinsufficiency has been suggested as the underlying genetic mechanism, it is not known how this affects tooth development. Here we describe a novel, hypomorphic Pax9 mutant allele (Pax9(neo)) producing decreased levels of Pax9 wild-type mRNA and show that this causes oligodontia in mice. Homozygous Pax9(neo) mutants (Pax9(neo/neo)) exhibit hypoplastic or missing lower incisors and third molars, and when combined with the null allele Pax9(lacZ), the compound mutants (Pax9(neo/lacZ)) develop severe forms of oligodontia. The missing molars are arrested at different developmental stages and posterior molars are consistently arrested at an earlier stage, suggesting that a reduction of Pax9 gene dosage affects the dental field as a whole. In addition, hypomorphic Pax9 mutants show defects in enamel formation of the continuously growing incisors, whereas molars exhibit increased attrition and reparative dentin formation. Together, we conclude that changes of Pax9 expression levels have a direct consequence for mammalian dental patterning and that a minimal Pax9 gene dosage is required for normal morphogenesis and differentiation throughout tooth development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available