4.1 Review

Arm function after stroke: From physiology to recovery

Journal

SEMINARS IN NEUROLOGY
Volume 25, Issue 4, Pages 384-395

Publisher

THIEME MEDICAL PUBL INC
DOI: 10.1055/s-2005-923533

Keywords

stroke; hemiparesis; recovery; motor learning; reorganization

Funding

  1. NINDS NIH HHS [NS 02138] Funding Source: Medline

Ask authors/readers for more resources

There are varying degrees of spontaneous improvement in arm paresis over the first 6 months after stroke. The degree of improvement at 6 months is best predicted by the motor deficit at 1 month despite standard rehabilitative interventions in the ensuing 5 months. Animal studies indicate that the loss of fine motor control, especially individuation of the digits, is due to interruption of monosynaptic corticomotoneuronal connections. Spasticity occurs because of loss of cortical modulatory control on descending brain stem pathways and spinal segmental circuits but is not a major cause of motor dysfunction. Quantitative studies of reaching movements in patients suggest that arm paresis consists of higher-order motor planning and sensorimotor integration deficits that cannot be attributed to weakness or presence of synergies. Cortical stimulation experiments in animals and functional imaging studies in humans indicate that motor learning and recovery after stroke share common brain reorganization mechanisms. Rehabilitation techniques enhance learning-related changes after stroke and contribute to recovery. Future research will benefit from using quantitative methods to characterize the motor impairment after stroke and by applying concepts in motor learning to devise more physiologically based rehabilitation techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available