4.8 Article

Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids

Journal

BIORESOURCE TECHNOLOGY
Volume 96, Issue 18, Pages 1967-1977

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2005.01.011

Keywords

dilute acid; pretreatment; corn stover; enzymatic hydrolysis; digestion

Ask authors/readers for more resources

A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potential yield of both sugars over a range of sulfuric acid concentrations of 0.22%, 0.49% and 0.98% w/w at 140, 160, 180 and 200 degrees C. Up to 15% of the total potential sugar in the substrate could be released as glucose during pretreatment and between 15% and 90+% of the xylose remaining in the solid residue could be recovered in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56% of total maximum potential glucose plus xylose for just enzymatic digestion to 60% when glucose released in pretreatment was included. Xylose yields similarly increased from as high as 34% of total potential sugars for pretreatment alone to between 35% and 37% when credit was taken for xylose released in digestion. Yields were shown to be much lower if no acid was used. Conditions that maximized individual sugar yields were often not the same as those that maximized total sugar yields, demonstrating the importance of clearly defining pretreatment goals when optimizing the process. Overall, up to about 92.5% of the total sugars originally available in the corn stover used could be recovered for coupled dilute acid pretreatment and enzymatic hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose yields, particularly for low cellulase loadings. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available