4.7 Article

Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 65, Issue 15-16, Pages 2364-2373

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2005.06.007

Keywords

nanocomposite; fracture toughness; water uptake; epoxy resin

Ask authors/readers for more resources

Aircraft grade epoxy-clay nanocomposites based on tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) cured with diaminodiphenyl sulphone (DDS) were synthesized. Nanoclay was dispersed in both acetone and an acetone epoxy solution with a high pressure mixing (HPM) method to form pastes. The basal spacing of the nanoclay in these pastes was increased as observed from X-ray diffraction (XRD) data. Transmission electron microscopy (TEM) images show that the agglomerates of nanoclay were broken down to form small particles consisting of several clay platelets. Fracture toughness of this epoxy system has been greatly enhanced with the addition of nanoclay. With the addition of only 4.5 phr of clay, the strain energy release rate of the epoxy is increased 5.8 times from the original value. Scanning electron microscope (SEM) was used to examine the characteristics of the fracture surfaces from the different materials. There is also significant reduction in the diffusivity and the maximum water uptake of the epoxy resin with the addition of the nanoclay. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available