4.7 Article

Neural network-based sliding mode control of electronic throttle

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2005.03.008

Keywords

electronic throttle control; uncertainty; sliding mode; neural networks; adaptive control

Ask authors/readers for more resources

A neural network-based sliding mode controller for an electronic throttle of an internal combustion engine is proposed. Electronic throttle is modeled as a linear system with uncertainties and affected by disturbances depending on the states of the system. The disturbances, consisting of an unknown friction and a torque caused by the dual spring mechanism inside the mechanical part of the throttle, are estimated by a neural network whose parameters are adapted on-line. The sliding mode controller and the parameters adaptation scheme are derived in order to achieve a tracking of a smooth reference signal, while preserving boundedness of all signals in the closed-loop system. Experimental results are presented which demonstrate the efficiency and robustness of the proposed control scheme. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available