4.6 Article

Significance of small voltage in impedance spectroscopy measurements on electrolytic cells

Journal

JOURNAL OF APPLIED PHYSICS
Volume 98, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2137444

Keywords

-

Ask authors/readers for more resources

We investigate, theoretically, for what amplitude of the applied voltage to an electrolytic cell the concept of impedance is meaningful. The analysis is performed by means of a continuum model, by assuming the electrodes perfectly blocking. We show that, in the low-frequency range, the electrolytic cell behaves as a linear system only if the amplitude of the measurement voltage is small with respect to the thermal voltage V-T=k(B)T/q, where k(B)T is the thermal energy, and q is the modulus of the electrical charge of the ions, assumed identical except for the sign of the charge. On the contrary, for large frequency, we prove that the amplitude of the applied signal has to be small with respect to a critical voltage that is frequency dependent. The same kind of analysis is presented for the case in which the diffusion coefficients of the positive ions is different from that for negative ions, and for the case where surface adsorption takes place. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available