4.7 Review

Role of phospholamban phosphorylation on Thr17 in cardiac physiological and pathological conditions

Journal

CARDIOVASCULAR RESEARCH
Volume 68, Issue 3, Pages 366-375

Publisher

OXFORD UNIV PRESS
DOI: 10.1016/j.cardiores.2005.08.010

Keywords

phospholamban; Thr(17) site phosphorylation; beta-adrenergic stimulation; acidosis; ischemia; heart failure

Ask authors/readers for more resources

The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) is under the control of a closely associated SR protein named phospholamban (PLN). Dephosphorylated PLN inhibits the SR Ca2+ pump, whereas phosphorylation of PLN, at either Ser(16) by PKA or Thr(17) by calmodulin-dependent protein kinase II (CaMKII), reverses this inhibition, thus increasing SERCA2a activity and the rate of Ca2+ uptake by the SR. This would in turn lead to an increase in the velocity of relaxation, SR Ca2+ load, and myocardial contractility. Thus, PLN is a major determinant of cardiac contractility and relaxation. Although in the intact heart, beta-adrenoceptor stimulation results in phosphorylation of PLN at both Ser(16) and Thr(17) residues, the role of Thr(17) site has long remained equivocal. In this review, we attempt to highlight the signaling cascade and the physiological relevance of the phosphorylation of this residue in the heart under both physiological and pathological situations. (c) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available